ON SIGN CHANGES FOR ALMOST PRIME COEFFICIENTS OF HALF‐INTEGRAL WEIGHT MODULAR FORMS

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sign Changes of Coefficients of Half Integral Weight Modular Forms

For a half integral weight modular form f we study the signs of the Fourier coefficients a(n). If f is a Hecke eigenform of level N with real Nebentypus character, and t is a fixed square-free positive integer with a(t) 6= 0, we show that for all but finitely many primes p the sequence (a(tp2m))m has infinitely many signs changes. Moreover, we prove similar (partly conditional) results for arbi...

متن کامل

Coefficients of Half-integral Weight Modular Forms

In this paper we study the distribution of the coefficients a(n) of half integral weight modular forms modulo odd integers M . As a consequence we obtain improvements of indivisibility results for the central critical values of quadratic twists of L-functions associated with integral weight newforms established in [O-S]. Moreover, we find a simple criterion for proving cases of Newman’s conject...

متن کامل

Fe b 20 16 SIGN CHANGES OF FOURIER COEFFICIENTS OF MODULAR FORMS OF HALF INTEGRAL WEIGHT , 2

In this paper, we investigate the sign changes of Fourier coefficients of half-integral weight Hecke eigenforms and give two quantitative results on the number of sign changes.

متن کامل

Holomorphic Almost Modular Forms

Holomorphic almost modular forms are holomorphic functions of the complex upper half plane which can be approximated arbitrarily well (in a suitable sense) by modular forms of congruence subgroups of large index in SL(2,Z). It is proved that such functions have a rotation-invariant limit distribution when the argument approaches the real axis. An example for a holomorphic almost modular form is...

متن کامل

Fourier Coefficients of Half - Integral Weight Modular Forms modulo `

S. Chowla conjectured that every prime p has the property that there are infinitely many imaginary quadratic fields whose class number is not a multiple of p. Gauss’ genus theory guarantees the existence of infinitely many such fields when p = 2, and the work of Davenport and Heilbronn [D-H] suffices for the prime p = 3. In addition, the DavenportHeilbronn result demonstrates that a positive pr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematika

سال: 2016

ISSN: 0025-5793,2041-7942

DOI: 10.1112/s0025579316000048